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Abstract. Global optimization remains an important area of active research. Many macroscopic
and microscopic applications in science and engineering still present formidable challenges to
current global optimization techniques. In this work, a completely different, novel and general
geometric framework for continuous global optimization is described. The proposed methodology
is based on intelligent movement along the valleys and ridges of an appropriate objective function
using downhill, local minimization calculations defined in terms of a trust region method and
uphill integration of the Newton-like vector field combined with intermittent SQP corrector steps.
The novel features of the proposed methodology include new rigorous mathematical definitions of
valleys and ridges, the combined use of objective function and gradient surfaces to guide movement,
and techniques to assist both exploration and termination. Collisions with boundaries of the feasi-
ble region, integral curve bifurcations, and the presence of non-differentiabilities are also discussed.
A variety of examples are used to make key concepts clear and to demonstrate the reliability,
efficiency and robustness of terrain methods for global optimization.
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1. Introduction

Global optimization is still a very important and challenging interdisciplinary
area of research and with the recent thrust in multi-scale simulation and opti-
mization, global methods will continue to be challenged. However, many good
global optimization techniques are presently available. Some of these methods are
general-purpose while others are specific to a given application area. There are
general-purpose deterministic methods like the tunneling algorithms of Levy and
Montalvo [8] and Bahren and Protopopescu [2], �BB by Maranas and Floudas
[11], and the interval analysis methods of Hansen [6] and Schnepper and Stadtherr
[15]. There are also general-purpose stochastic methods for global optimization
like the stochastic differential equations approach of Zirilli and co-workers [1]
and the work of Bilbro [4]. Most general-purpose methods tend not to exploit any
problem specific information and are therefore widely applicable. There are also
deterministic and stochastic algorithms designed for particular classes of prob-
lems. Methods here include the tangent plane method of Michelsen [12] for phase
equilibrium by Gibbs energy minimization, the chain-of-states method of Sevick
et al. [16] and the nudged elastic band (NEB) methods of Henkelman et al. [7]
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for transition state and reaction pathway calculations, and Monte Carlo and
molecular dynamics approaches for conformational analysis by potential energy
minimization like the work of Bolhius et al. [5]. There are many other methods,
far too many to list here.
Recently Lucia and Yang [9, 10] have developed a novel geometric methodol-

ogy for the global optimization of least-squares objective functions. The ideas that
form the theoretical and computational framework for this geometric methodol-
ogy are (1) that stationary points are connected along valleys and ridges and (2)
that it is rather straightforward to move from one stationary point to another by
moving up and down the landscape or terrain of the least squares function using
the Newton and tangent vector fields. While there are considerable details to this
terrain methodology, the overall strategy is quite simple and made up of a unique
blend of equation solving, nonlinear programming and eigenvalue–eigenvector
tasks. Moreover, Lucia and Yang [9, 10] have applied their terrain methodology
to a variety of small and large-scale problems including equations of state, reac-
tor and distillation examples and the associated numerical results clearly illustrate
that terrain methods represent a reliable and efficient global equation solving
methodology.
This paper describes the unique theoretical framework and related numerical

results for the global optimization of general objective functions by terrain meth-
ods and is organized in the following way. The details of our framework for terrain
methods for general objective functions are presented in Section 2. More subtle
considerations concerning integral curve bifurcations and non-differentiabilities
are then discussed in Section 3. In Section 4, numerical results for phase
split/Gibbs energy calculations and transition state and reaction pathway calcula-
tions in molecular modeling are presented. Conclusions are given in Section 5.

2. Mathematical Background

The terrain methodology is an overall philosophy for moving from one stationary
point to another that requires reliable local equation solving tools as well as reli-
able and efficient uphill exploration. Reliable local equation solving is required
to find both a first stationary point from an arbitrary initial guess and any subs-
equent minima, saddle points and singular points to desired accuracy. Reliable
and efficient uphill exploration, on the other hand, is needed to move from one
stationary point to the next along a valley. Other peripheral tasks such as reliable
and efficient eigenvalue–eigenvector calculations and solving nonlinearly con-
strained optimization problems are also needed. With each choice of method for
a given task comes a slightly different terrain method.

2.1. PRELIMINARIES

Let � be a C3 objective function in the unknown variables Z that takes Rn into R
and let g and H be the gradient and Hessian matrix associated with�. Furthermore,
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let L denote any level curve of �, � be any set or collection of level curves and
let � � denote the two norm of any vector. Finally, let M=HTH+	giGi, where
Gi is the second derivative matrix of the ith component of the gradient.
For general global optimization calculations we use two surfaces to guide

movement—a primary objective function, gTg=�g�2, and a secondary objective
function surface �. Note that saddle points and minima of � are actually minima
of gTg and that saddle points on gTg correspond to points where H is singular.
Thus the surface gTg contains all of the stationary points of � plus addition
stationary points which correspond to singular points of H. The stationary points
on each of these surfaces will be connected and will define valleys and ridges on
each surface. However, it is important for the reader to realize that valleys on �
may or may not coincide with valleys on gTg.

2.2. INITIALIZATION

Terrain methods are made up of up and downhill movement. Initial movement is
always downhill and for this the starting point is arbitrary. Subsequent movement
from any stationary point, whether up or downhill, is always initialized using
eigen-information from either the primary or secondary objective function. Thus
reliable and efficient calculation of some of the eigenvalues and eigenvectors of
the matrices H and M is needed. The general rules for movement from a stationary
point of gTg are straightforward and are based on the eigenvalues of M. That is,
uphill movement is generally initialized in the eigen-direction associated with the
smallest positive eigenvalue of M while downhill movement is initiated in the
eigen-direction associated with the largest negative eigenvalue of M.
There are occasions, however, when eigen-information from gTg can be

misleading. Thus some of the eigenvalues and eigenvectors for both H and M
are needed. Let �M and cM be the eigenvalue and normalized eigenvector of M
selected by the rules described in the previous paragraph. Also let �H and cH be
the eigenvalue and normalized eigenvector of H selected by the rules described
in the previous paragraph. If 57.295 arccos[cTHcM]>1 and �H<�M, then �H and
cH are used to initiate movement; otherwise �M and cM are used. This test first
checks the angle between the normalized eigenvectors of H and M. If that angle is
less than 1° and the principle eigenvalue of H is less than the principle eigenvalue
of M, then eigen-information from the secondary objective function is used to
initiate movement to the next stationary point. The usefulness of this test is illus-
trated using a molecular modeling example in the section containing numerical
results.

2.3. DOWNHILL MOVEMENT

Downhill movement is always calculated using a trust region method. Thus
downhill steps are defined by

�=−��N+��−1�g (1)
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where �N=H−1g is the Newton direction and where �∈ �0�1� is determined by
the following simple rules. If ��N��R, then �=1, where R is the trust region
radius. If ��N�>R and �g��R, then �=0. Otherwise, � is the unique value
in Equation (1) on [0,1] that satisfies ���=R. The new iterate is accepted if
it reduces �g�. Otherwise, the new iterate is rejected, the trust region radius
is reduced and the calculations are repeated until a reduction in �g� occurs.
Furthermore, if during downhill (or uphill) movement, �g�/��N��� , then the
quadratic acceleration step given by

�=−M−1Hg (2)

is used. Downhill movement is terminated when either �g��� or �Hg��� where
� is a convergence tolerance and can result in convergence to either a minimum,
saddle point or singular point of �.

2.4. UPHILL MOVEMENT

Uphill movement is based on predictor-corrector calculations. Uphill predictor
steps are simply controlled uphill Newton steps defined by

�=��N (3)

where the step size �∈�0�1�. These uphill Newton steps tend to follow valleys
reasonably well but do drift some. Therefore, corrector steps are used intermit-
tently to return iterates to the current valley and are invoked when

�=57�295arccos
(

�T
Nc

��N��c�
)
�� (4)

where c is the current estimate of the eigenvector associated with the appropriate
eigenvalue of M and � is 5°. Corrector steps are defined by iteratively solving
the nonlinear programming (NLP) problem

opt gTHTHg such that gTg=L (5)

The optimality conditions associated with Equation (5) are

gTg−L=0 (6)

MHg−�Hg=0 (7)

where L is the value of the level set at the last predictor iterate. Note that by
iteratively solving Equation (5), the terrain methodology generates a sequence of
corrector steps each time it is necessary to return to a valley.
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What distinguishes terrain following methods from all other global optimization
methods is their unique rigorous nonlinear programming (NLP) characterization
of valleys and ridges. Let V denote a valley or ridge defined by the set

V =�opt gTHT Hg such that gTg=L for all L∈�� (8)

That is, V is a set of local minima of gTHTHg over a given set of neighboring
level curves. Note that Equations (6) and (7) clearly show that valleys and ridges
are defined by a sequence of constrained eigenvalue-eigenvector problems and
that � in Equation (7) is actually the Lagrange multiplier associated with the level
constraint defined in Equation (5). Moreover, the task of intermittently solving
Equation (5) provides a straightforward means of updating both the principle
eigenvector that defines the current valley, Hg, and its associated eigenvalue, �.

2.5. EIGENVALUE–EIGENVECTOR CALCULATIONS

Except for the initial downhill or uphill movement, eigenvalues and eigenvec-
tors of H and M are often required to begin either uphill or downhill movement.
However, only a few eigenvalues and eigenvectors are needed. For these calcula-
tions we use the inverse power method together with incomplete factorization to
compute a few eigenvalues and eigenvectors. Also we never actually form matrix
products like HTH to avoid rounding errors.

2.6. TERMINATION

Lucia and Yang [9, 10] base their termination criterion on something they call
limited connnectedness. All that this means is that stationary points are really
only connected to neighboring stationary points along specific eigendirections.
We assume that the number of important connections between stationary points
along valleys and ridges is limited to four or less and is related to dominant
geometric distortions (i.e., +/− the smallest positive eigendirection and +/−
the most negative eigendirection) caused by the strongest ‘attractions’ between
neighboring stationary points. This makes it possible to dynamically catalogue
connections in a set, C, and to conclude that all of the important connections
between stationary points have been explored when C is empty. Thus termination
occurs when C is the empty set.

2.7. AN ALGORITHM

The basic steps of our terrain algorithms are outlined briefly below.

1) Set j=1, choose a starting point, Z0, define the feasible region, set C=� �
and initialize the set of stationary points, S=� �.

2) Find an initial stationary point, s∗j of g
Tg and put s∗j ∈S. Set k=1.
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3) For s∗j ∈S
3a) perform a partial eigendecomposition of M and H at s∗j .
3b) add to C only those dominant eigendirections, ci, not previously explored.

4) Set nk=s∗k and

4a) explore each dominant eigenconnection ci∈C associated with s∗k .
4b) add each new stationary point found to S, deleteCi, set j=j+1 and go to 3.
4c) for each boundary encountered, delete ci, and go to 5.

5) Set k=k+1 and go to 4.
6) Repeat steps 4 and 5 for all s∗j ∈S until C is empty.
Step 1 is an initialization step that also includes the initialization of any problem-
solving parameters like a trust region radius, the maximum allowable function and
gradient evaluations, convergence tolerance, etc. Step 2 finds an initial station-
ary point from an arbitrary starting point. Here downhill calculations using a trust
region method are tried first. If no stationary point is found, then uphill calcula-
tions are used to look for a saddle point or singular point from the initial starting
point. If both downhill and uphill calculations result in no stationary point, we con-
clude that there is no stationary point for the given problem. Step 3a calculates the
necessary eigenvalues and eigenvectors of the important Hessian matrices. Step 3b
adds only the important eigen-directions to the set of connections, C, that haven’t
been explored before. This prevents unnecessary back tracking. Step 4 identifies
the k-th stationary point and in step 4a each of its associated eigen-connections
is explored by moving either up or downhill, depending on the sign of the asso-
ciated eigenvalue of either M and H (see section 2.2), using the appropriate tools
(i.e., local equation solving, acceleration and/or predictor-corrector calculations) to
accomplish the task. Step 4b increments the set of stationary points, deletes each
eigen-direction associated with the k-th stationary point after it has been explored,
and loops to step 3 to add any new eigen-directions associated with any new sta-
tionary point that has been found. In contrast, step 4c deletes any eigen-connection
associated with the k-th stationary point if a boundary has been encountered. Step
4 and 5 constitute the main iterative loop for terrain following. Note that the sets
S and C keep running totals of the number of nodes (or stationary points) and the
unexplored branches (or connections), systematically exploring, adding and delet-
ing branches for each stationary point as required. Step 6 provides the termination
criterion for the algorithm.

3. Some Subtle Issues in Terrain-Following

In this section, some additional theoretical details for integral curve bifurcations
and points of non-differentiability are discussed in the context of terrain following.



A GEOMETRIC TERRAIN METHODOLOGY FOR GLOBAL OPTIMIZATION 303

3.1. INTEGRAL CURVE BIFURCATIONS

We have encountered several problems that exhibit integral curve bifurcations.
Tangent, pitchfork and other bifurcations in integral curves occur at points where
gTHTHg is simultaneously a local minimum and a local maximum on some level
curve of gTg. These bifurcation points are easily characterized by the singular-
ity of the projected Hessian matrix of the Lagrangian function associated with
Equation (5).
Tangent bifurcations in integral curves are similar to the bifurcations that occur

in parametric S-shaped solution curves and characterized by the merging or
splitting of a single minimum and single maximum on some level curve of gTg.
This type of bifurcation corresponds to points where an integral curve becomes
tangent to a level curve—something that is very easy to measure numerically
because of the eigenvalue–eigenvector and corrector calculations that are part of
the terrain methodology. That is, a tangent bifurcation is characterized by the fact
that Hg no longer corresponds to the smallest positive or largest negative eigendi-
rection. Tangent bifurcations also typically exhibit hysteresis. Lucia and Yang
[10] illustrate tangent bifurcations in integral curves using the simple problem of
finding all azeotropes for isopropyl alcohol and water.
Pitchfork bifurcations can also occur in integral curves. This type of bifurcation

is usually the result of competition between neighboring stationary points and
corresponds to a point where two minima and one maximum in gTHTHg occur
simultaneously on some level curve of gTg. Pitchfork bifurcations are also easily
determined in a numerical setting since they correspond to a point where the
projection of the Hessian matrix of the Lagrangian function onto the tangent
subspace of the level constraint has a zero eigenvalue. Lucia and Yang [10]
also give an illustration of pitchfork bifurcations in integral curves using the
steady-state Lorenz equations.

3.2. NON-DIFFERENTIABILITIES

There are also applications in which there are points of non-differentiability.
In process engineering, models of high-pressure vapor-liquid phase equilibrium
using an equation of state often exhibit non-differentiabilities at compositions
where there is a switch between vapor and liquid. Consider as an example high-
pressure vapor-liquid equilibrium (VLE) at fixed temperature and pressure. As
compositions pass through the boundaries of the two-phase region, the relative
values of the hypothetical single vapor Gibbs free energy and the hypothetical
single liquid Gibbs free energy will go through an exchange. That is, either the
Gibbs free energy of the liquid will become lower than that of the vapor or the
Gibbs free energy of the vapor will become lower than that of the liquid. Thus
the overall Gibbs free energy function on which phase stability is based is a
composite function formed by selecting the lower of the two hypothetical single
phase Gibbs energies at all compositions. The exchange from vapor to liquid or
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vice versa that occurs at certain compositions results in a cusp or fold because
of the distinct differences between vapor and liquid compressibilities at these
compositions. However, these non-differentiable points present no difficulties for
the terrain methodology because both the liquid and vapor Gibbs energy surfaces
can be easily monitored and appropriate measures can be taken when a switch
occurs. Similar remarks apply to VLLE and VLLLE as well as any situation that
involves a switch or exchange of models for different regions of the feasible
region.

4. Numerical Examples

In this section, phase split calculations and molecular modeling examples are used
to illustrate the numerical performance of terrain methods. For these numerical
experiments, the initial trust region radius, R, was 1. The convergence tolerance
for all stationary points of gTg, �, was set to 1×10−8, the trigger for quadratic
acceleration, � , was 1×10−6 and the convergence tolerance for Kuhn-Tucker
conditions for the individual NLP problems used in the corrector calculations
(i.e., Equation (5)) was �1/2. Furthermore the value of � in Equation (4), which is
used to invoke corrector steps, was 5. All calculations were performed in double
precision arithmetic on a PC equipped with a Pentium III processor and a Lahey
F77/90L-EM32 compiler.

4.1. PHASE SPLIT CALCULATIONS

Phase split calculations are often used to provide good initial values for macro-
scopic multiphase equilibrium calculations by Gibbs free energy minimization.
Here we are generally interested in finding all minima in the tangent plane dis-
tance function because combinations of these minima define candidate phases
and corresponding phase compositions that are useful in determining the global
minimum Gibbs free energy for a given feed mixture at specified temperature
and pressure. See, for example, Michelsen [12]. In fact, providing assurance
that all minima of the tangent plane distance function can be found significantly
strengthens the robustness of multiphase equilibrium codes based on tangent plane
analysis. Moreover, for kinetic reasons we might also be interested in finding all
saddle points since these saddle points represent energy barriers to macroscopic
phase transitions.
Consider a ternary mixture of aniline, heptane and water at 313.15K and

1�013×106 Pa. It is well known that this mixture exhibits three liquid phases at this
temperature and pressure. For this illustration, the UNIQUAC equation described
in Prausnitz et al. [14] was used to model liquid phase activity coefficients. The
binary interaction parameters for this mixture are shown in Table 1.
Figure 1 shows the dimensionless Gibbs free energy of mixing projected onto

the mass balance constraint (see Equation 10) for a single hypothetical liquid
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Table 1. UNIQUAC binary interaction parameters for aniline-heptane-
water

Aniline Heptane Water

Aniline 2�00 133�07
Heptane 288.92 1149�7
Water 134.34 618�90

Figure 1. Gibbs energy of mixing for aniline-heptane-water at 313.15K and 1.013 bar.

phase for this mixture at 313.15K and 1�013×106 Pa. Note that the surface has
three minima and two saddle points inside the feasible composition region. There
are also six minima and three saddles on the boundaries of the feasible region.
Therefore for any feed that contains nonzero amounts of all three components
we are interested in finding the three minima (and perhaps the two saddle points)
strictly inside the boundaries of the feasible region. Mathematically this problem
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Figure 2. Computational tree for phase split calculation.

can be represented in the form

min�G/RT =	xi�lnxi+ln%i� (9)

subject to 	xi−1=0 (10)

0<xi<1 (11)

where xi and %i denote the composition and activity coefficient for the ith com-
ponent and �G/RT denote the dimensionless Gibbs free energy of mixing.
Figure 2 shows the numerical results for this problem from a starting point

of x0=�0�1�0�1�0�8� reported in the form of a computational tree, where the
component order is aniline, heptane, water. In this figure, dark gray, light gray
and white nodes denote minima, saddle points and singular points respectively.
The starting point and stationary points are reported using only the aniline and
heptane compositions for brevity. Dashed branches denote downhill movement,
solid branches denote uphill movement, and the number of function and gradi-
ent evaluations from stationary point to stationary point are shown in parenthesis
along side the appropriate branch. Boundary points are also denoted by white
nodes. Note that the terrain algorithm finds all five stationary points on the
dimensionless Gibbs energy of mixing surface as well as four singular points in
571 function and gradient evaluations and 0.11 s of computer time. We also note
that the principle eigenvalues and eigenvectors of M gave no conflicting infor-
mation with regard to correctly identifying valleys or finding the next stationary
point for this problem. Numerical details for these computations are quite lengthy
and are available from the authors on request.
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Now we turn to multiphase equilibria by Gibbs free energy minimization
defined by

min G/RT =		nk
i �G

0k
i /RT+lnxki +ln%k

i � (12)

subject to fi−	nk
i =0�i=1�����nc (13)

0<nk
i <fi (14)

where nk
i is the molar flow for the ith component in the kth phase, G

0k
i is the ith

component standard state Gibbs free energy, xki =nk
i /	n

k
j , fi is the feed molar

flow of the ith component and nc is the number of components in the mixture.
Moreover, the double summation, 		, is over the number of phases, np, and
number of components in that order.
From the minima shown in Figure 2 and elementary mass balance consider-

ations, it is a relatively simple matter to determine the global minimum in the
dimensionless Gibbs energy for any given feed mixture. For 1 mole of feed
that contains 30mol% aniline, 30mol% heptane and 40mol% water, the minima
in Figure 2 and mass balance considerations suggest that the only appropriate
choices of phases are either liquid–liquid equilibrium (LLE) or liquid–liquid–
liquid equilibrium (LLLE). This is easily seen from Figure 1 by envisioning the
possible points of double and triple-tangency that simultaneously pass through the
given feed. Subsequent calculations give, in fact, four multiphase solutions—three
liquid–liquid equilibria (LLE) and one liquid–liquid–liquid (LLLE) equilibrium.
These solutions are shown in Table 2.
Solution 3, which required 13 function and gradient evaluations to find, is an

unstable equilibrium and corresponds to a saddle point on the dimensionless Gibbs
energy surface, G/RT, projected onto the plane defined by the component mass bal-
ances. Thus solution 3 can be ruled out immediately after it is computed. The two
meta-stable liquid-liquid equilibrium solutions, on the other hand, were located in
9 and 12 function and gradient evaluations, have dimensionless Gibbs energies of
−0�100536 and 0�090200 and are actually local constrained minima of G/RT. The

Table 2. Phase equilibria for aniline-heptane-water at 313.15K and 1�013×106 Pa∗

G/RT

1 LLE (2�00458×10−3, 2�49664×10−7, 0.299415) −0�100536
(0.29799, 0.29999, 0.100585)

2 LLE (0.27290, 1�39059×10−2, 0.38667) −0�090200
(0.02710, 0.28609, 1�333×10−2)

3 LLE (0.19745, 0.29849, 7�70194×10−2) −0�059582
(0.10254, 1�5100×10−3, 0.32298)

4 LLLE (2�99365×10−2, 0.271175, 1�03785×10−2) −0�141625
(1�68157×10−3, 2�03195×10−7, 0.274779)
(0.26838, 2�8825×10−2, 0.108425)

∗Component molar flows in the order: (1) aniline; (2) heptane; (3) water.
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intrinsically stable liquid–liquid–liquid equilibrium with a dimensionless Gibbs
energy of−0�141625 required nine function and gradient evaluations to find. Each
of these phase equilibrium computations takes less than 0.01 s of computer time.
Clearly, the three-liquid phase solution is the global minimum of the Gibbs free
energy for this feed at 313.15K and 1�013×106 Pa. Note that the global minimum
of the Gibbs free energy for any feed mixture can be obtained in a similar manner
without re-calculating the minima in Figure 2.
Finally, we remark here that the Riedel equation and physical property data

given in Prausnitz et al. [14] were used to calculate standard state Gibbs energies
and that the numerical details of these Gibbs free energy minimization calculations
are available from the authors by request.

4.2. MOLECULAR MODELING

One very important problem in molecular modeling is the determination of min-
ima and saddle points of potential energy functions derived from either empirical
force fields or ab initio quantum mechanical models. Results from these calcu-
lations can be used in a variety of ways. They can be used to help initialize
molecular dynamic and Monte Carlo simulations, to find reaction pathways, or
in transition state theory. Potential energy minimization can also be used for
molecular conformational purposes (e.g., in protein folding).
Potential energy models derived from empirical force fields take the general

form

E=Eb+Enb (15)

where Eb represents the bonded or short-range energy effects such as bond lengths
and bond and torsion angles and Enb represents the non-bonded or long-range
energy effects from van der Waals and electrostatic forces. There are many, many
models for bond length, bond angle, torsional, van der Waals and electrostatic
effects. However, all of these energy effects can be expressed in terms of the
Cartesian coordinates of the particles in the system. In this section we present
two examples.
Consider the calculation of transition states and reaction pathways. One of the

biggest disadvantages of some numerical techniques in molecular modeling like
those that belong to the class of chain-of-states methods is that they require a
priori knowledge of the coordinates of the reactants and products on the potential
energy surface in order to locate transition states. That is, a global minimum
(or product state) and at least one local minimum corresponding to a reactant
state must be known ahead of time in order to calculate meaningful transition
states (i.e., saddles) and the corresponding reaction pathway. In contrast, general
methods like the �BB method used by Westerberg and Floudas [17] and some
methods specifically designed for molecular modeling such as Baker’s method [3]
do not require a priori knowledge of reactant and product states to find transition
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states. Terrain methods belong to the class of methods that do not require a priori
knowledge of reactant and product states.
The first example is a slight modification of the classical Muller-Brown potential

energy function [13], which can be viewed as something like a bond stretching
Morse potential with cross terms to capture stretch-stretch bond length–bond
angle interactions in a three-particle system with a fixed bond angle of 180°.
The Muller-Brown potential energy function is, however, an empirical model and
given by

EMB=	Diexp�Ai�r23−x1i
0�2+Bi�r23−x1i

0��r12−x2i
0�+Ci�r12−x2i

0�2� (16)

where the parameters x1i
0=3�2�1�5�1, x2i

0=1�1�5�2�5�2, Ai=−1, −1, −6�5,
−0�7; Bi=0, 0, 11, 0.6; Ci=−10, −10, −6�5, 0.7; Di=−200, −100, −170, 15
for i=1�����4. All we have done here is modify the original constants of Muller
and Brown so that the stationary points all lie in the positive orthant.
Figures 3 and 4 show the Muller-Brown function and the surface gTg for the

Muller-Brown function for the feasible region r23, r12∈ �0�3�5�. Note that there
are three minima and two saddle points on the surface EMB and 23 stationary

Figure 3. Muller-Brown potential energy surface.
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Figure 4. Gradient surface for the Muller-Brown function.

points on gTg—nine minima, 10 saddle points and four maxima. The nine minima
on gTg correspond to the three minima and two saddles on EMB plus four other
singular points of H, whereas the 10 saddles and four maxima on gTg are all
singular points of H. Thus there are many singular points of H—18 in all—on
the Muller-Brown potential energy surface. Nonetheless there are clear valleys
on EMB and g

Tg that contain stationary points of interest. Note, however, that the
valleys of gTg are quite a bit more tortuous than the valleys of EMB.
One meaningful set of objectives that might be of interest here are the calcula-

tion of all minima and saddle points on EMB and the determination of any reaction
pathways from arbitrary starting points. We have, in fact, done this for a wide
variety of starting points in the feasible region and have experienced no difficulties
whatsoever in finding all stationary points on the Muller-Brown potential energy
surface and uncovering the correct reaction pathway from any starting point.
Figure 5 shows computational results for the starting point �r23�r12�=�2�5�1�4�.
In finding the 11 stationary points shown in Figure 5, 466 function and gradi-
ent evaluations and 0.06 s of computer time were required. Remember, for the
purposes of the terrain following calculations, gTg is the primary objective func-
tion and �=EMB is the secondary objective function so the results in Figure 5
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Figure 5. Computational tree for Muller-Brown potential.

also include the calculation of a number of singular points of H. Moreover,
it is important to realize that the number of stationary points on gTg that are
found will depend on the starting point. In the case of the numerical results
shown in Figure 5, our terrain method found 11 stationary points on gTg. For
other starting points, more stationary points were found. For example from the
starting point �r23� r12�=�1�9�2�2�, 13 stationary points on gTg were located in
580 function and gradient evaluations and 0.06 s of computer time. Note that
because terrain methods follow integral curves, they automatically generate reac-
tion pathway information on potential energy surfaces as a simple by-product of
the calculations.
The Muller-Brown function also nicely illustrates the need for monitoring both

the objective function and gradient surfaces in global optimization because of the
sharp change in the orientation of the valley on EMB that occurs in the region
containing the global minimum. Note that the portion of the valley containing
the global minimum is essentially orthogonal to the portion of the valley contain-
ing all other stationary points on EMB. During computations, difficulties arise at
the stationary point s7=�r23�r12�=�1�17800�1�62431� in Figure 5. Eigenvalue–
eigenvector calculations for the Hessian matrix of gTg (i.e., the matrix M) give the
smallest positive eigenvalue, �M=2�4003×105, and the associated normalized
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eigenvector, cM=�0�64829�0�76140�. However, this information is misleading.
Here’s why. Although this stationary point is a local minimum on gTg, it is a
saddle point on EMB; thus g=0, M=HTH and therefore �M=�2H. However, the
eigenvalues of H are 490.241 and −750�863.ecause �M=�2H and the positive
eigenvalue of H is actually smaller in magnitude than the negative eigenvalue, if
initial movement from this stationary point were based on eigenvector information
from M, it would carry iterates uphill along a ridge on EMB, which is wrong. In
contrast, the largest negative eigenvalue and corresponding normalized eigendi-
rection associated with of H are �H=−750�863 and cH=�−0�76140� 0�64829�
and clearly indicate that the stationary point is a saddle. This eigen-information
provides correct downhill movement toward the potential energy well containing
the global minimum, keeping the terrain path in the right valley. All of this is
accomplished rather easily and automatically with the aid of the test described in
the second paragraph of Section 2.2.
The second example in the molecular modeling area is a Lennard-Jones fluid.

The Lennard-Jones 6–12 potential energy function is a common pair-wise poten-
tial for estimating van der Waals or non-bonded forces between particles in an
N-body system and typically has many stationary points, some of which are due
to rotational symmetries. Moreover because of the number of unknown variables
graphical representation of the potential energy surface is often not possible. The
functionality of the Lennard-Jones potential is given by

ELJ =		 4�ij��/ij/rij�
12−�/ij/rij�

6� (17)

where the double summation is from i=1�����N−1 and j= i+1�����N respec-
tively, �ij is an energy parameter, /ij is a distance parameter, and rij is the
separation between particle i and particle j given by

rij= ��xi−xj�
2+�yi−yj�

2+�zi−zj�
2�1/2 (18)

where xi, yi and zi denote the Cartesian coordinates of the ith particle. There
are also implicit constraints that are needed to avoid translational and rotational
singularities. For any three-dimension configuration with three or more particles,
there are six constraints and thus 3N–6 degrees of freedom. These constraints are
linear, most easily written in the form

x1=y1=z1=0, y2=z2=0 and z3=0 (19)

and are easy to handle. Note that these constraints arbitrarily tether the first particle
to establish an origin and avoid translation of the entire systemwhile the constraints
on particles 2 and 3 prevent bond angle and torsion angle singularities.
The particular system studied is a classical system involving 100 Argon

particles, where �ij=1�66×10−21 J and /ij=3�4×10−10 m. Thus there are 294
unknown particle coordinates from which bond angles and torsion angles are
easily computed. The application of the terrain methodology to this problem
resulted in the location of 73 stationary points in 3933 function and gradient calls
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and 3.05 s of computer time. The lowest value of the energy function obtained
was −2�73×10−19 J. A number of molecular dynamics (MD) simulations were
also run for the same exact N-body system from a variety of initial particle
positions and velocities to verify that this was in fact the global minimum. For
each MD simulation, we observed the appropriate Hamiltonian conservation with
equilibrated trajectories that ‘orbited’ the potential energy well corresponding
to −2�73×10−19 J. Again numerical results are available from the authors by
request.

5. Conclusions

A geometric terrain methodology for the global optimization of general C3

objective functions was presented. Novel features of this methodology include
a rigorous characterization of valleys and ridges, the simultaneous use of two
surfaces to guide exploration and attention to integral curve bifurcations and
non-differentiabilities. A small collection of numerical examples was presented
in this paper that show that the proposed terrain methodology represents a reli-
able and efficient way of finding minima, saddle points, singular points, changes
in convexity and addressing other related goals in global optimization. However
the problems presented here represent only a small fraction of the problem solv-
ing experience we have with our terrain methodology. We have in fact solved
a large number of benchmark and engineering examples including reactor prob-
lems, flash and distillations, equations of state, data regression problems, phase
transitions and polymer thermodynamics examples. Other recent work by Lucia
and Yang [10] also shows that this methodology can be used to solve prob-
lems that have parametrically disconnected solutions, like reactor problems where
some solutions lie on isola and other solutions lie on a disconnected S-shaped
branch. All in all, we believe that the proposed terrain methodology is capable
of solving global optimization problems in a reliable and efficient manner using
only a modest amount of computer time.
Finally, we close with a remark that we have made in an earlier paper regarding

numerical aspects of the NLP sub-problems that arise from our rigorous charac-
terization of valleys and ridges (i.e., Equation (8). These constrained optimization
problems can be quite ill conditioned and require a very reliable NLP algorithm to
solve. We have tried readily available successive quadratic programming (SQP)
software with very little success and presently use our own NLP solver for this
task. Thus, it is important for anyone interested in constructing their own terrain
method from various software components that considerable care be given to the
robustness of the individual components (i.e., local equation solver, acceleration
techniques, NLP solver, eigen routines, etc.).
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